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Abstract. The stability of S i c  polytypes has been discussed elsewhere in terms of successive, 
pairwise, interplanar interactionsJ, between Ising-like pseudo-spins. Here the model is first 
critically re-examined to resolve some doubts about the generality of the energy expression 
and the meaning of the J,. The original expression is validated as the correct most general 
form, with the four-spin coupling term K re-interpreted as a modification of the third- 
neighbour interaction depending on the local geometry. Secondly we note the moderately 
long range of the interaction to third-neighbour atomic double layers found in density 
functional calculations on Si and Sic.  We argue that this can be interpreted as the remnant 
in the semiconductor of what would be Friedel oscillations in a metal. 

1. The questions and principal conclusions 

This paper is part of a series [ 1-51 to further our understanding of why some materials 
form polytypes, notably Sic .  Other work has considered the energies of polytypes at 
temperature T = 0 K [l-31, the contribution of the phonon free energy [4,5], and the 
relaxation of bond angles and interatomic distances from the ideal tetrahedral values of 
the cubic zincblende structure [3,4]. The present purpose is to tidy up two issues running 
through all of the above. One is to analyse more thoroughly than before the general 
energy expression for an arbitrary polytype in terms of interplanar interactions to still 
certain doubts that have arisen. This model is basic to the analysis of polytype energies 
at T = 0 K [ l ,  21 and their phonon free energies at higher T [ 5 ] ,  so its validity and 
generality need to be established critically. The other issue is to discuss the physical 
origin of the range of the interplanar interaction which is found to extend out to about 
six bond lengths. 

The S i c  polytype structures consist of atomic double layers (hereafter ‘layers’ for 
short), each of which can be stacked in two different orientations onto the one below, 
as has been described many times, e.g. in [2] and references given there. It is usual [l- 
51 to denote the two orientations of layer i by a pseudo-spin si = { t = 1, 4 = -1) 
(hereafter a ‘spin’ for short). The energy including interactions up to the third-nearest- 
neighbour layer for a system of N layers is then written (per layer) as 

An additional four-spin term with coefficient K 

was considered separately by Cheng et aZ[2], although it was found to be smaller than 
- Ksisi+lsi+~si+3 (1b) 
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C Si C Si C Si C Si C Si C Si 

A T  B T  C T  A T  B J  A T  

Figure 1. Different relative lateral positions of the final double layer-it is an 'up' layer in 
both cases-in the two sequences (left) A f B T C t and (right) A f B J A t . 

J3.  We are confining ourselves to 'ideal' polytypes in which all bond lengths and angles 
equal their values in the cubic structure. A layer is then uniquely characterised by its si: 
relaxation effects [3] are not encompassed by (1). The expression can be applied to the 
polytype energy at T = 0 K or to the phonon free energy at arbitrary temperature by 
making the coefficients functions of T. We emphasise that here a spin refers to a whole 
(perfect) layer, not to a pair of Si and C atoms as it might in some Ising model. 

The energy expression (1) seems obvious enough: interactions between layers up to 
three layers apart. Moreover it has the required symmetry of being invariant under 
simultaneous inversion of all the sL+ -si, which corresponds to rotating the whole 
polytype by 180" about the stacking direction. 

One might question, however, whether this was indeed the most general expression 
up to and including next-next-nearest interactions for four reasons. First, the { t , 1 } is 
only a shorthand for a relative change in layer type as a function of position. That is, 
there are really three different absolute positions at which a Si or C atom could lie, 
corresponding to the A, B and C sites of the usual hexagonal lattice. Thus the lateral 
positions of the outer two layers in the set t t (i.e. A t B t C t ) and the set t & t 
(A t B 1 A t ) are different (see figure 1). Yet in the interlayer model these outer spins 
would interact with the same coupling J 2 :  should not there be two coupling constants 
J; and J; depending on whether we are dealing with the pair of layers AC or A A  in this 
example, i.e. depending on the orientation of the layer in between? For instance, the 
difference between them could be represented by a three-spin term proportional to 

although such a possibility with an odd number of spins breaks the global spin- 
inversion symmetry already mentioned. 

Second, a problem arises from the geometry of stacking layers one on top of another: 
if one layer in the structure is reversed in orientation, say the third in figure 2, then all 
the subsequent layers to the right also undergo a translation from one hexagonal site to 
another, e.g., layer 4is translatedfromA to B t . The consequent change ininteraction 
energy between layers to the left of the flipped spin and layers to the right must therefore 
be correctly taken into account in the coefficients of (1). 

The third reason concerns the lower symmetry of S ic  compared with the cor- 
responding (although hypothetical) polytypes of pure Si or C. To see this, consider a 
three-layer block as shown in figure 3. The two arrangements t & and 1 t t are 
related by a 180" rotation of the block and hence possess, if all the atoms are identical, 
the same energy. This is true in pure Si, but in S i c  the rotation is not a symmetry 
operation because it interchanges Si and C atoms and so the two blocks have different 
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C Si C Si C Si C Si C Si 

,r 1 
Figure 2. Stacking layers to form Sic  polytypes: the five layers are f f t .1 (full line) and 
t t .1 t .1 (dashed line), the lines tracing the bond directions in what would be the (110) 
plane of the cubic polytype. Note that reversing the direction of a single layer-here it is the 
third-causes a lateral shift of all subsequent layers. 

C Si C Si C si C Si C Si C Si 

fef I b )  
Figure 3. Two configurations ( a )  t t 4 and ( b )  t 1 1 of a three-layer block. Note that if 
the C atoms are replaced throughout by Si atoms then (a )  and (b )  are related by a 180" 
rotation about a vertical axis in the plane of the paper. 

energies. Hence, we might expect an energy expression for S ic  to require a greater 
number of parameters than for Si. The paradox is that the energy expression (l), 
containing five parameters, appears to apply to both systems since the polytypes of both 
can be uniquely described in terms of the pseudo-spins si. The resolution of this paradox 
is revealing: the energy of an isolated three-layer block of either Si or S i c  can be 
expressed as 

E(3' = E O  - J I ( s ~ s ~  + ~ 2 ~ 3 )  - J ~ s I s ~  - L Y ( S ~ S ~  - ~ 2 ~ 3 ) .  P a )  

This involves four constants, corresponding to the four different energies present when 
spin-inversion symmetry is taken into account. For a (hypothetical) Si polytype the last 
term of (2a)  is identically zero by the symmetry shown in figure 3, but not so for S ic .  
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Now consider an arbitrary set of three layers in a polytype, the energy of which can be 
written, in analogy with (2a), as 

EL3) = Eo -J1(sns,+l + s,+1s,+2) - J2s,s,+2 - 4 S d , + l  - s,+1s,+2). (2b) 
To obtain the total energy all such three-blocks are summed over, in which case the (Y- 

term sums to zero. The Hamiltonian (1) therefore need contain only the first three terms 
of (2b) when interactions are truncated beyond next-nearest neighbour. The J1 in (2b) 
and (1) differ by a factor of two because of overcounting when the sum over all blocks 
is taken. 

The fourth point concerns the significance of the four-spin term (lb).  In [2] it was 
assumed to be a higher-order interaction, of negligible magnitude relative to J 3  but 
perhaps comparable to J4. However, from the preceding discussion, particularly our 
first point, this is clearly incorrect: interactions between next-next-nearest layers depend 
on what orientations are possessed by intermediate layers and this is precisely the 
information carried by a four-spin term. We can combine the terms J3 and K to write 

- (53 + K ~ i + l s i + 2  )sisi+3 (3) 
which we interpret as an interaction between layers i and i + 3 of magnitude J3 + K or 
J 3  - Kdepending on whether the intervening layers have the same spin or opposite spin. 
The four-spin term may in addition of course contain a genuine fourth-order multilayer 
interaction. Similarly if interactions up to fourth-neighbour layers were to be included 
the J4-term and two different four-spin terms would be required with coefficients K4 and 
K i ,  say. 

In section 2 we will address these issues by starting in full generality with a finite 
block of four layers only, and building up the energy expression for the full polytype. 
We can already understand from the preceding discussion the conclusion that will 
emerge. Equation (1) is indeed the correct general expression up to third-neighbour 
interactions, as one might expect from the general validity of symmetry arguments. 
There are additional interaction constants as seen in (2), but when appropriately for- 
mulated they sum to zero for a polytype of infinite extent as shown from (2b). The J, in 
(1) are therefore not simple interactions between two layers, but have many effects 
swept up into them including the change of the interaction with the ‘downstream’ layers 
discussed in connection with figure 2. The interpretation of the four-spin term (lb) has 
already been given as part of the third-neighbour interaction (3) depending on the 
geometry of the layers in between. 

We turn now to the other topic in the present work concerning the range of the 
interactions that are inherent in the electronic structure energy at T = 0 K. When 
the research project on S i c  was started, opinion was very sceptical about significant 
interactions beyond first- or second-neighbour bonds. Such was the accepted wisdom 
from organic chemistry for perfect saturated tetrahedral bonds. In reality interactions 
to third-neighbour layers were found, i.e. to sixth-neighbour bonds [l, 21. A similar 
manifestation from the electronic structure can be seen in the Hellmann-Feynman 
forces on nearby atomic layers around an antiphase boundary (calculated for the ideal 
structure in the sense already defined) [3]. These forces cause the atomic relaxations 
observed in the polytypes [3]. From the calculations on the polytypes ( 2 ) ,  (3) and (23) 
one can deduce that these forces extend to about the fourth atomic double layer. What 
is the origin of this unexpectedly long range? In section 3 we shall discuss the point that 
S i c  is a good example of a nearly free-electron gas, as recognised for diamond by Mott 
and Jones [6]. We shall argue that the range of the interaction found in S ic  is the remnant 
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in the semiconductor of the long range Friedel oscillations in a metal [7,8].  In a sense 
this follows almost by definition from the current understanding of electronic structure. 
An antiphase boundary or a single reversed layer is a perturbation of the system. This 
results in a local screening by the electron gas, plus a longer range disturbance of 
the electron density which we call the Friedel oscillations although they may differ 
considerably from their simple form in a free-electron gas. 

2. Deriving the general energy expression 

In this section we derive the most general form of the energy expression for an arbitrary 
polytype up to and including interactions between third neighbours. To proceed, con- 
sider subdividing the bulk configuration of spins {si} into blocks of four-spins, the size of 
block being chosen to include the maximum range of the microscopic interactions. Since 
the blocks overlap there will be some multiple counting when we sum over all blocks to 
obtain the total energy but this is easily corrected. In making the division into a set of 
four-blocks, the translational symmetry is lost, and one obtains 24 different four-blocks 
with a total of eight different energies once spin-inversion symmetry has been accounted 
for. Clearly the five parameters of the energy model (l), Eo, J1, J 2 ,  J 3 ,  and K can no 
longer distinguish these eight energies uniquely so new terms with three new parameters 
are required. Odd-order combinations of spins are not included because they are not 
invariant under spin inversion si+ -si for all i. 

The three new parameters a, /3, y are not uniquely defined but a natural choice is 
the following: three different types of J 1  can be identified in a single four-block, each 
arising from the difference in energy between different pairs of spins: 

J?=E(  t t * . ) - E (  t .1 a . )  

Here the dots denote averaging over up and down spins on those particular sites in the 
four-block. In S i c  all three are distinct, while in pure Si a rotation by 180" about an axis 
perpendicular to the plane of the paper in figures 1 to 3 is a symmetry operation giving 

represents this difference between JE andJ7 (see (2) and (3)), and /3 corresponds to the 
difference (JT - J!) - (Jt - 1;) while], is the average of J ? ,  J! andJi .  Similarly a third 
new parameter y is introduced to represent the difference between the two next-nearest 
neighbour J,s that can be defined, just as a represents the difference for nearest- 
neighbour interactions. Combining these additional terms to form a Hamiltonian 
describing the energy of an arbitrary four-block one obtains: 

J Q  - J'j in this case. We define the parameter a as the coefficient of the spin term that 

4E0 - J l ( s f s f + l  + s 1 + 1 s f + 2  -/- s ~ + 2 s ~ + 3 )  - a(sfsi+l - s ~ + 2 s ~ + 3 )  - / 3 [ ( s i s f + l  - s ~ + 1 s 1 + 2 )  

- ( s L + 1 s l + 2  - s l + 2 s f + 3 ) I  - J 2 ( s f s f + 2  + s ~ + 1 s ~ + 3 )  - y ( s ~ s ~ + 2  - s f + 1 s ~ + 3 )  

- J 3 s f s f + 3  - K s l s 1 + ~ s l + 2 s 1 + 3 ~  ( 5 )  
We can now obtain the total energy (1) by summing ( 5 )  over successive blocks of 

four layers along the polytype, dividing the Eo-,JI  andJ2-, terms by4,3 and 2 respectively 
to correct for multiple counting. We obtain precisely the form (l), the terms with the 
other parameters a, p and y having cancelled out (ignoring end effects). 
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The analysis can be carried one step further. All of the eight parameters in ( 5 )  can 
be defined in terms of the energies of an isolated four-block. For instance from ( 5 ) ,  the 
four-block of spins { t t 1 t } possesses an energy 

E ( ?  ? 1 t ) = 4 E o + J 1 - 2 a - 2 P + 2 y - J 3 + K .  (6) 
Equation (6), and the seven similar energy equations, can then be inverted to enable 
the parameters to be expressed in terms of the energies themselves. The five bulk 
parameters Eo,  J 1 ,  J z ,  J 3  and K are then (with El  = E( t t i ) ,  t t ), E 2  = E( t 
E 3 = E ( ?  t 1 t) ,  E 4 = E ( ?  t 1 k), E 5 = E ( t  1 t ?) ,  E 6 = E ( ?  & t 11, E7= 
E ( ?  k 1 ? ) , E , = E ( T  1 1 1)) 

Shaw [7] has also given the expressions for a, P ,  y. 
The point of all this exercise is that we believe it validates and illuminates the 

generality of the expression (1). In section 1 we mentioned various complications which 
one can certainly see in discussing the finite four-block, particularly the ‘downstream’ 
effects shown in figure 2 and the difference in symmetry between pure Si and S ic  
polytypes. By our procedure we have shown that they are incorporated for a long 
polytype into the five parameters of (1). For instance the greater symmetry of a Si 
polytype would imply a = y = 0 in that case, but that makes no difference to the final 
form (1). Thus the J , ,  J 2 ,  J 3  and K are seen to be effective interactions between pairs of 
layers, including much else besides. One knows that the energy of the diamond structure 
cannot be represented physically as the sum of pairwise central forces. Note that in (7) 
the various E,  are arbitrary unrelated energies: there is no assumption in the analysis 
about the E, coming from pairwise forces only, so the E,  can include arbitrarily com- 
plicated many-atom covalent effects. Yet the final result (1) has the formal appearance 
of pairwise interlayer interactions, explicitly for the terms in J 1 ,  J 2 ,  J 3  and implicitly in 
the term ( lb)  if one accepts our interpretation of K in section 1 as part of the third- 
neighbour interaction in the sense of (3). 

One can add some further flesh on the dry bones of this discussion by calculating the 
E, in (7) as an approximation by perturbation theory as a sum of pairwise interactions. 
We consider two atomic double layers with a separation z placed in a free-electron gas. 
Their interaction I( p ,  v ,  n)  varies with three factors: p = p or a, depending on whether 
the spins of the layers are parallel or antiparallel; v = A, B or Cif the lateral position of 
the second layer is A,  B or C relative to the first as A, where we take the designation A,  
B or C from that of the left-hand atom of the double layer; n = z /do  = 1, 2 or 3 is the 
separation in units of the interlayer spacing do. The total energy E, of any block of four 
layers in (7) can now be expressed as a sum of these pairwise interactions I(  p ,  v ,  n)  
where we have six separate interactions for each n. Shaw [7] has done this and hence 
obtained from (7) lengthy expressions for the J,, and Kin  terms of the I( p ,  v ,  n). 

These expressions confirm two points already advanced in the general preceding 
discussion. Firstly J1 does not only involve I( p ,  v ,  n)  with n = 1 but also terms with n = 
2 and 3. The latter are the ‘downstream’ effects mentioned in connection with figure 2. 
Secondly Shaw [7] obtained a non-zero expression for K, although the approximation 
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layera A A 

I . , .  

10 15 10 15 

Double-layer separation (a.&) 

Figure 4. Interactions between planes AA, AB and AC of Si at varying separation, computed 
using free-electron perturbation theory. The first A layer is always up, while the second 
is either up (full curve) or down (dotted curve). The ideal interplanar separation in Si is 
do = 5.92 au. 

involves pairwise interactions only, with no genuine four-layer interaction. This confirms 
our interpretation of K as part of the third-neighbour interaction in the sense of (3). 

Figure 4 shows the six interactions or rather the total energy of the two interacting 
layers as a function of separation z in the six geometrics. These were calculated by 
second-order perturbation theory on a free-electron gas as for a metal [lo]. They were 
calculated for pure Si because it was felt that perturbation theory was even less valid for 
S ic  than for Si. There is no suggestion that pure Si should form polytypes: the parameters 
J 1  and J z  have quite the wrong ratio [l, 21. Moreover, we shall argue in section 3 that in 
the semiconductor S ic  the interaction should be damped exponentially as a function of 
distance and an order of magnitude smaller than in figure 4. Nevertheless we draw two 
qualitative conclusions. Firstly, all the six values of I( p ,  v ,  n)  for given n are comparable, 
from which it follows that K is in general comparable to J 3 .  Secondly, dZ/dz gives a 
force between the layers. This is the origin of the Hellmann-Feynman forces found in 
calculations around antiphase boundaries [3]. The forces, the J,,, the phonon force 
constants and the interaction between two antiphase boundaries due to the Z(p, v ,  n)  
all have the same origin and hence the same range. The latter has been shown to extend 
to third-neighbour layers in the proper calculation of the J ,  [ 1,2], and about one layer 
further in the Hellmann-Feynman forces [3] and the phonon force constants [5]. 

3. The range of the J ,  

In the present section we discuss the origin of the range of the J ,  (and of the Hellman- 
Feynman forces: see the end of section 2) which somewhat surprisingly extends to about 
third or fourth atomic double layers, i.e. over a line of about six or eight bonds. 
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Table 1. InterlayerinteractionsJ, andJ2,  ineV, calculated for Si byfree-electron perturbation 
theory (FEPT) and by total energy calculations with density functional theory (DFT). 

FEPT DFI? 

J1 0.056 0,0078 
J 2  0.012 -0.0014 

t After [l], [2 ]  and [ 9 ] .  

Figure 4 shows the bare interaction that determines the I,, calculated by second- 
order perturbation theory for Si double layers as if in a metal of the same mean valence 
electron density, as discussed in section 2. The curves show the Friedel oscillations in 
the interaction. The main point is that their amplitude decreasesvery slowly with distance 
for a layer-layer interaction. The distance in the figure extends to third layers but clearly 
the amplitude continues with little decrease far beyond that. 

Our next point is that the amplitude of the interaction in a metal is an order of 
magnitude larger than computed from total energy calculations for a semiconductor. 
We choose to work with pure Si instead of S ic  for the reason given in section 2. Although 
Si always has the cubic structure because of the magnitude and sign of J1 (relative to J 2 ) ,  
this does not invalidate our discussion of the longer range interactions. The results are 
compared in table 1, from a second-order perturbation theory calculation as for a metal 
and from full total energy calculations [9]. The perturbation calculations [7 ,  101 were 
carried out to be as analogous to the total energy calculations as possible, namely the 
energies of several polytype structures were calculated and then analysed by fitting the 
form (1). We are not interested here in how well the two calculations compare in detail, 
only in the qualitative point that the proper results for J1, J 2  are an order of magnitude 
smaller than what they would be in a free-electron-like metal. 

At the end of section 1 we gave our reason for interpreting the long range part of the 
interaction as Friedel oscillations in a generalised sense. We can consider it to be the 
remnant in the semiconductor of metallic Friedel oscillations. The range, although 
unexpectedly long for a semiconductor, is much less than in the metal, and the amplitude 
is an order of magnitude less. 

We now consider in more detail how the results for the semiconductor should 
compare with those for a metal. Turning a layer over or creating an antiphase boundary 
is a perturbation in the semiconductor and should be calculable, at least approximately, 
by semiconductor perturbation theory. This differs from metallic perturbation theory 
in three ways: (i) in the existence of the band gaps in the energy spectrum; (ii) in the 
absence of a Fermi radius; and (iii) in the shape of the occupied region of k-space. Let 
us amplify these points in turn. Second-order perturbation theory for the energy involves 
expressions of the form (the energy/wave-number characteristic in the sense of [lo]) 

where Eis  the band structure energy, Msome matrix element, andfthe Fermi occupation 
factor that ensures (8) is non-zero only if the state k is occupied and k + q unoccupied 
(or vice versa). In free-electron perturbation theory the x(q) has a moderately sharp S- 
shape in the range q = 1.6kF to 2.4kF where kF is the Fermi radius because the energy 
denominator of (8) goes to zero for states k ,  k + q spanning a Fermi diameter. The 
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Figure 5. The k ,  = 0 section of the Jones zone for 
tetrahedral semiconductors. The points X’, X 
map onto the point X (001) in the Brillouin zone, 
all in units of 2n/a. The arrows join occupied 
states k inside the zone to unoccupied states at 
k + g (220). 

Fourier transform of this S-shape results in the Friedel oscillations of the interaction I 
in real space evident in figure 4. Regarding point (i) above, in a semiconductor the 
X(equation (8)) and resulting I should be reduced because the energy denominator 
cannot go to zero, its minimum value being the band gap. Figure 5 shows the Jones zone 
in the sense of [6,11,12] for a diamond-type semiconductor. The whole Jones zone is 
roughly spherical, contains exactly four electrons per atom, and replaces the Fermi 
sphere of a metal. Regarding point (ii), the wave vector spanning the Jones zone is now 
the reciprocal lattice vector g (220), shown in figure 5 and its analogues across other 
pairs of zone faces. The resultant Friedel-like oscillations are now commensurate with 
the lattice. Those from different pairs of zone faces will add up on some atoms and cancel 
on others to build up a coherent table 1. Figure 5 shows by arrows various points k and 
k + g (220), and we note (regarding point (iii)) that, unlike in a free-electron metal with 
aFermi sphere, we now have alarge region of k-space over which the energy denominator 
attains its minimum value, the band gap EG across the zone face. The situation is 
analogous to that of ‘nesting’ of a (non-spherical) Fermi surface [13], which enhances 
the amplitude of the Friedel-like oscillations. There is some empirical evidence for the 
nesting effect in that the phonon force constants are particularly strong and longer 
ranged in the (1 10) direction in Ge [ 141, though less so in S i c  [5]. Incidentally the Jones 
zone, drawn originally for the cubic structure, is not destroyed in polytypes. It is a curious 
fact that the x-ray structure factor in reciprocal space for any regular or irregular stacking 
sequence has delta functions at what are some of the reciprocal lattice vectors of the 
diamond structure, whereas others are split for a regular polytype or spread into lines 
in reciprocal space for irregular stackings [ 151. We therefore expect something like the 
Jones zone of figure 5 with its (220) zone faces to apply to any polytype. 

Unfortunately there appears to be no analytical model that can help us very much to 
estimate the x(q)  and I for a semiconductor or even the asymptotic form. The isotropic 
Penn model [16] replaces the Jones zone (figure 5 )  by a sphere, retaining the band gap, 
but the integrals are intractable. Sokel and Harrison [17] evaluate (8) with M = constant 
for a semiconductor with a direct band gap, i.e. where k in (8) is near a valence band 
maximum and k + q around a conduction band minimum. They obtain an exponentially 
decaying interaction Z(z), which would become modulated by an oscillation if the band 
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extrema were separated in k-space. However, in our case the valence band around X 
(figure 5) is a saddle point, corresponding to an approximately constant band gap across 
the zone face [ 121. Resta [ 181 and Liu [ 191 also obtain exponentially decaying interactions 
from other models, but in all cases the exponent is more or less the ratio of band gap to 
total valence band width EFO. 

In view of the shortcomings of the simplified models we have to resort to computation. 
Table 1 compares the values of J1 and J 2  for Si from free-electron perturbation theory 
(FEPT) [8] and from total energy calculations using density functional theory (DFT) with 
the local density approximation for exchange and correlation [9,10]. In both cases the 
energies of some simple structures were calculated, and J1, J 2  obtained by fitting the 
form ( l ) ,  the FEFT ones being our own and the DFT ones from [l], [2] and [9]. The FEPT 
gives quite a reasonable account of short range bonding, even in Si [20], because it is 
quite a good example of a nearly free-electron gas [6,11, 121 with a vertical band gap 
small compared with the total valence band width, and with a band structure that 
conforms to the expected form [12]. However, even J1 depends on the interaction of 
atoms which are a minimum of three bond lengths apart. It is therefore not surprising 
to see in table 1 that the DFT values are an order of magnitude smaller than those from 
FEFT. Incidentally the values for FEPT are only a rough indication: the way they are 
calculated includes the effect of some more distant J, which is not negligible for FEPT 
because of the long range of the Friedel oscillations in that case. 

We conclude that the magnitude and range of the interactions found by DFT cal- 
culations in S i c  [ 1-51, Si [ l ,  2,9] and Ge [ 141 can plausibly be interpreted as the remnant 
in the semiconductors of what would be Friedel oscillations in a free-electron metal. In 
broad terms the semiconductors are like a nearly free-electron gas [6, 11, 121, so one 
would expect a remnant. The magnitude would be reduced by the band gap, counter- 
balanced to some extent by the nesting effect, and an order-of-magnitude reduction of 
J1, J 2  is found compared with metallic values (table 1). The interaction is expected to 
decay exponentially with distance, unlike the metallic case of figure 4, with a decay 
length proportional to (EFOIEG) or (EFO/EG)l/’ depending on the model [17-191 with 
various numerical factors. For S i c  we estimate the vertical gap EG = 5 eV [21] giving 
EFO/EG = 4. The observed interactions have a decay of order eC1 per double layer 
spacing do [l-51, i.e. vanishing to a few per cent in three or four double layers, where 
kFdo = 4.5. These figures are entirely consistent with the expected picture of expo- 
nentially decaying, Friedel-like oscillating interactions in the semiconductor. 
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